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Parallel-coupled dual-racetrack silicon microresonators can potentially be used for quadrature amplitude modu-
lation. We analyze the evolution of the coverage of coherent output states of devices with varying device param-
eters. As the coupling constant increases, the coverage of coherent states initially improves then degrades, which
is unexpected based on a prior preference for overcoupling. Increasing the quality factor generally improves the
coverage. The influence of the refractive index modulation is found to saturate after reaching a certain level.
Analytic formulas are developed to provide insight into the coverage evolution. These results are fairly robust
against a small asymmetry of device parameters.
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Advanced optical modulation formats such as quadrature
phase-shift keying and quadrature amplitude modulation
could offer significant advantages for optical communica-
tions[1]. Recently, microresonator-based silicon modula-
tors[2–6] have emerged as an ideal candidate for optical
modulation devices due to their compact size, low power
consumption, and ease of integration with on-chip driving
circuitries. Microring resonator-based modulators have
been studied for advanced modulation formats[7,8]. We
have proposed a novel parallel-coupled dual-racetrack
(PCDR) microresonator structure[9], illustrated in Fig. 1,
for phase-shift keying and M -ary quadrature amplitude
modulation (QAM). Two identical silicon racetrack reso-
nators are symmetrically parallel coupled to a middle
waveguide. The modulator can be fabricated on a silicon-
on-insulator (SOI) wafer. The carriers can be injected
or depleted from the resonators using a PIN diode or a
metal-oxide-semiconductor capacitor embedded in a
silicon waveguide. The plasma dispersion effect of the
injected carriers modifies the refractive index Δn1, Δn3
in each racetrack resonator, which affects the cross-
coupled resonances of the two racetrack resonators. A
salient feature of this structure is that the coherent cross
coupling between the two racetrack resonators mediated
by the middle waveguide drastically modifies the ampli-
tude/phase characteristics of resonance. This enables
arbitrary M -ary quadrature signal generations such as
quadrature phase-shift keying (QPSK) and 16-QAM.
The entire structure can be extremely compact
(∼14 μm× 10 μm), which is a significant advantage com-
pared to conventional QPSK modulators.

A key performance feature of this structure is that it can
achieve very large coverage of all the possible states for the
coherent output field. It has been found qualitatively that
overcoupling tends to be beneficial to a large coverage of
all possible states[9]. Other than this, very little is known
about how to optimize various parameters to achieve a
large coverage of all possible coherent output states. In
this work, we show that within the overcoupling regime
the coverage of output states depends on the coupling
constant in a complex manner, and excessively strong
coupling is not conducive to achieving a large coverage.
The quantitative result is unexpected and it reveals that
refined design and analysis is necessary to choose a proper
coupling constant rather than simply going for very strong
coupling. On the other hand, an increasing quality factor
tends to always be beneficial to a large coverage. We
develop an analytic theory that explains these dependen-
cies accurately and provide insight into the device perfor-
mance. Furthermore, the influence of the level of the
refractive index modulation is found to saturate after

Fig. 1. Schematic drawing of PCDR resonators.

COL 14(10), 102304(2016) CHINESE OPTICS LETTERS October 10, 2016

1671-7694/2016/102304(4) 102304-1 © 2016 Chinese Optics Letters

http://dx.doi.org/10.3788/COL201614.102304
http://dx.doi.org/10.3788/COL201614.102304


reaching a certain level, which offers useful information for
efficient operation of the device.
We start with a recapitulation of the key points of the

PCDR resonators[9]. The coupling between the two race-
track resonators and the middle waveguide in Fig. 1
can be described by multiwaveguide coupling theory.
The solution of the coupled mode equations yields a
set of linear relations between an and bn, which are the
normalized input and output amplitudes labeled in
Fig. 1. The linear relations depend on the parameters
c1 ¼ 1

2 cosð ���
2

p
κLÞ, c2 ¼ 1��

2
p i sinð ���

2
p

κLÞ, where κ is the cou-
pling constant. The strength of the cross coupling between
the two racetrack resonators mediated by the through
waveguide is given by jc1 − 1∕2j. In addition, light propa-
gation along a racetrack gives rise to another set of
relations between an and bn. Assuming a unity input am-
plitude a2 ¼ 1, the output amplitude b2 can be solved as

b2 ¼ eiϕ
�
−1þ 2ðc1 þ 1∕2Þ

ð1∕2− c1Þð1∕Δu1 þ 1∕Δu3Þ þ 1

�
; (1)

where ϕ ¼ βL, β is the propagation constant, and

Δun ≡
1

eiϕþiθnηn
− 1; n ¼ 1; 3; (2)

where ηn < 1 is the amplitude attenuation along a race-
track and θn is a phase shift. The critical coupling condi-
tion can be obtained by setting b2 ¼ 0 in Eq. (1). Without
modulation (Δu1 ¼ Δu3), this condition is given by

η1 ¼ 2c1 ¼ cos
���
2

p
κL: (3)

Under modulation, the phase shift θn in each racetrack
will be a linear function of the refractive index changes
Δnn due to carrier injection or extraction in the respective
racetrack resonator. Therefore, the output amplitude b2
depends on Δnn through the phase-shift terms. Detailed
calculations show that the modulated phase and ampli-
tude vanishes under the conditions

ϕþ θ1 ¼ 2m1π − Δθ; ϕþ θ3 ¼ 2m3π þ Δθ; (4a)

cos Δθ ¼ η1

�
1þ c1ð1∕η21 − 1Þ

c1 þ 1∕2

�
; (4b)

where m1 and m3 are two integers. Here, Eqs. (4a) and
(4b) together give the condition for the output amplitude
to vanish under modulation. For Eq. (4b) to be valid (for a
real phase shift Δθ), its right hand side must be no greater
than unity. Detailed calculations show that this requires
η1 ≥ 2c1 ¼ cos

���
2

p
κL, which clearly corresponds to the

overcoupling regime for an unmodulated dual-racetrack
resonator, by comparison to Eq. (3). The structure used
in this work has a racetrack length L ¼ 3 μm and radius
r ¼ 3 μm.
For a dual-racetrack resonator to produce arbitrary

QAM signals, a general design goal is that its output

amplitude and phase can cover the maximum area within
the unit circle on the complex Eout plane, where all pos-
sible coherent output states reside. Furthermore, it would
be desirable that such coverage is achieved efficiently
through index modulation. To achieve such design goals,
simply satisfying Eqs. (4a) and (4b) is not sufficient as this
only ensures the coverage of the Eout ¼ 0 point. The
dependence of coverage on various parameters must be
systematically analyzed.

The coherent output characteristics of a dual-racetrack
resonator are largely affected by two key parameters: the
coupling constant c1 and the loss parameter η1. The latter
can be related to a more frequently used parameter quality
factor Qn ≈ πngLtot∕½ð1− ηnÞλ�, where ng is the group in-
dex and Ltot is the round trip length of a resonator, and λ is
the wavelength. We simulate the coverage of the coherent
output states for Δn1, Δn3 ¼ −0.001 to þ 0.001, for a
number of cases with different Q1 and c1 parameters, as
shown in Fig. 2. In plotting Fig. 2, we have defined

Eout ¼ b2∕eiϕ: (5)

This allows us to remove an unimportant phase factor
eiϕ whose effect is simply to shift the output phase for each
device by a fixed amount. Such an overall baseline phase
shift has no actual effect on the device operation. Appa-
rently, the coverage improves for larger Q1 and larger c1.

To gain insight into the evolution of the coverage with
device parameters, we wish to develop some analytic
theory that can describe the relation between the coverage
area and the key parameters Q1 and c1. Although the
overall characteristics are complex from Fig. 2, it appears
that the following features are critical. (1) The covered
area is always symmetric with respect to the real axis
(after removing the baseline phase shift eiϕ). (2) The left-
most and rightmost points of the covered area are located

Fig. 2. Coverage of the coherent output states for Δn1,
Δn3 ¼ −0.001−þ0.001, under different Q1 and c1. A potential
QPSK constellation is shown in the top right case.
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on the real axis, and the covered area is largely limited by
the location of the two points min Re Eout, max Re Eout.
(3) As the quality factor increases, min Re Eout decreases
and max Re Eout increases, hence the coverage enlarges.
(4) As the coupling constant increases, both min Re Eout

and max Re Eout increases. The last characteristic is inter-
esting in that when both points increase, generally it is
hard to predict the increase or decrease of the coverage
area. However, it appears that in the cases shown in Fig. 2,
the increase of max Re Eout with c1 is faster than that of
min Re Eout. Therefore, the coverage still improves.
Overall, it appears that the coverage is largely con-

trolled by the two points on the real axis, min Re Eout

and max Re Eout. It would be desirable to derive the for-
mula for these two points and analyze its trend. Note that
Eout is real if and only if Δu1 ¼ Δu�3, according to Eq. (1).
According to the definition of Δun in Eq. (2), this real Eout

requirement translates to the condition given by Eq. (4a).
This can be called a push–pull condition because it re-
quires the phase in one resonator to increase and the other
to decrease. Under this push–pull condition, we find

1
Δu1

þ 1
Δu3

¼ 2Re
1

Δu1
¼ 2 cos Δθ∕η1 − 2

1∕η21 þ 1− 2 cos Δθ∕η1
: (6)

Note that all Eout on the real axis can be obtained by
EoutðΔθ;−ΔθÞ. One can readily show that the minimum
and maximum Re Eout is achieved when cos Δθ ¼ �1,

min ReðEoutÞ ¼
�
−1þ ð2c1 þ 1Þ

ð1− 2c1Þ∕ð1∕η1 − 1Þ þ 1

�
; (7)

max ReðEoutÞ ¼
�
−1þ ð2c1 þ 1Þ

−ð1− 2c1Þ∕ð1∕η1 þ 1Þ þ 1

�
:

(8)

When we compare these values with the leftmost and
rightmost points on the real axis, we find that the leftmost
point agrees well with Eq. (7), but the rightmost point is
generally smaller than the value given by Eq. (8). This can
be understood as follows. The leftmost point is achieved
with cos Δθ ¼ 1, or Δθ ¼ 0 when the refractive index is
not modulated. The rightmost point is achieved with
maximum phase shiftΔθmax. Depending on the magnitude
of Δnn, it is possible that Δθmax < π. Therefore, the
rightmost point in Fig. 2 is actually defined by
EoutðΔθmax;−ΔθmaxÞ, where Δθmax is determined by the
maximum Δnn.
Therefore, the coverage of the coherent output states

(on the complex Eout plane) is prescribed by the following
analytic formula: Eq. (7) gives the leftmost point of the
covered area and Eqs. (1) and (6) together give the right-
most point. We can plot EoutðΔθ;−ΔθÞ for Δθ ¼ 0 and
Δθ ¼ Δθmax for various refractive index modulation levels,
as shown in Fig. 3(a), and analyze their trends with the
key physical parameters of quality factor and the coupling
constant. For reference, the maximum Re Eout defined by

Eoutðπ; πÞ is also plotted in Fig. 3(b). However, it should be
noted that this quantity is almost always close to unity,
and the actual maximum EoutðΔθmax;−ΔθmaxÞ is limited
by the amount of index modulation.

Clearly, as the quality factor increases, min Re Eout ¼
Eoutð0; 0Þ decreases and EoutðΔθmax;−ΔθmaxÞ increases,
hence the covered area enlarges. This explains the trend
with the quality factor given in Fig. 2. On the other hand,
as the coupling constant increases, both min Re Eout

and EoutðΔθmax;−ΔθmaxÞ increases. For small c1 values
between 0.35 and 0.45, min Re Eout ¼ Eoutð0; 0Þ increases
very slowly with c1, which does not obviously reduce
the coverage on the complex Eout plane. However, for
c1 > 0.45, min Re Eout increases very rapidly, which
will significantly degrade the coverage. To better illu-
strate this effect, we further plot the coverage for
c1 ¼ 0.46 ∼ 0.49 (with Q1 ¼ 30000 and Δn1, Δn3 ¼
−0.001−þ0.001) in Fig. 4. The trend with respect to
c1 at the given quality factor is plotted in Fig. 4(e) for
clarity. Evidently, for too high c1 values, Eoutð0; 0Þ rises
fast and the coverage degrades rapidly. Note that the
maximum possible value of c1 is 0.5 according to its def-
inition. Also, increase of the quality factor is limited by the
waveguide loss.

The best coverage shown in Fig. 2 can be further
improved by varying the maximum index modulation.

Fig. 3. Variation of the output amplitude under the condition
Δθ1 ¼ −Δθ3 (a) for various levels of Δn ¼ 0, 0.0005, 0.001;
and (b) for a phase shift Δθ1 ¼ −Δθ3 ¼ π, which gives the maxi-
mum real value of Eout. Note that the scale of the vertical axes in
(a) and (b) are different.

Fig. 4. Coverage of coherent output states for Q1 ¼ 30000
and Δn1, Δn3 ¼ −0.001−þ0.001 (a) c1 ¼ 0.46, (b) c1 ¼ 0.47,
(c) c1 ¼ 0.48, and (d) c1 ¼ 0.49. (e) EoutðΔθ;−ΔθÞ for
different c1.
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To this end, the coverage under various maximum index
modulation levels is plotted in Figs. 5(a)–5(d). Generally,
EoutðΔθmax;−ΔθmaxÞ increases very fast at small δn
values; and the coverage somewhat saturates after
δn ≥ 0.0015, after which the coverage increases very
slowly with δn. Figure 5(e) illustrates the overall trend
with δn. Note that the coverage at δn ¼ 0.0015 is suffi-
ciently large, and one may use this in practical applica-
tions to avoid unnecessary further increase of the
driving signal and ensure efficient operation of the device.
According to the AC current formula of silicon modulators
based on charge supply (or extraction)[10,11], the AC driving
current for δn ¼ 0.0015 is estimated at around 2 mA at
10 Gbaud, which is reasonable. Possible constellations
for QPSK and 16-QAM are shown in Fig. 5(c).
Due to fabrication imperfections, there may exist some

asymmetry between the quality factors (Q1, Q3) and cou-
pling constants (κ12, κ23). To analyze the influence of such
asymmetry, we plot the Eout characteristics with varying
coupling constants and quality factors in Fig. 6. The sym-
bols represent the data for 20% asymmetry between the
resonators in κ or Q. Evidently, the difference between
asymmetric cases and the ideal symmetric case repre-
sented by the lines is fairly small. Under such asymmetry,
the above analytic results can remain quite robust, and the
coverage does not deviate far from the ideal design.
In conclusion, we develop an approach to the systematic

design of the dual-racetrack resonator structure for
maximum coverage of the complex output E-field plane
in order to generate quadrature amplitude signals. The
trend of coverage with varying quality factor and varying
coupling constant is systematically analyzed. As the
quality factor increases, the coverage is improved. As
the coupling constant increases, the coverage initially

increases then degrades. The influence of the level of
refractive index modulation is found to saturate after
reaching a certain level. The design results are reasonably
robust against a small asymmetry of the device
parameters.
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Fig. 5. Coverage of coherent output states for Q1 ¼ 30000
and c1 ¼ 0.45, for Δn1, Δn3 ¼ −δn −þδn. (a) δn ¼ 0.0005,
(b) δn ¼ 0.001, (c) δn ¼ 0.0015, (d) δn ¼ 0.002. (e) The varia-
tion of the EoutðΔθmax;−ΔθmaxÞ with δn.

Fig. 6. Influence of the structure asymmetry in dual-racetrack
resonators. The red and blue lines represent Eoutð0; 0Þ and
EoutðΔθmax;−ΔθmaxÞ for δn ¼ 0.001, respectively, for an ideal
structure whose parameters are the same as Fig. 5. The symbols
represent the results for a structure (a) with 20% asymmetry in κ,
and (b) with 20% asymmetry in the quality factor.
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